WALT - Use a range of multiplicative strategies when operating on whole/part-whole numbers.
In maths today we were given a question (digitally online), and we had to complete this questions and provide evidence of our learning on our blog.
The question given:
I am twice my brothers age, and ⅕ of my mothers age.
My father is is older than my mother by half my brothers age.
All our ages are whole ages!
I go to school but my doesn’t yet.
With me I created a google presentation, in order to show my learning and to show the strategy I used to solve this problem.
At first I was a bit confused, but in the end I was able to see the reason for me being so confused was because of reading to fast, and missing 'key words and phrases'. But after skimming and scanning an reasonable amount of times again through the questions, I was able to find those words, and phrases I missed reading the first time(s) I read the questions.
One thing I found difficult, was understanding the question. But to avoid this from happening next time in the future I will double check, re-read and skim and scan for information missed out.
My nexts step that I think shall help me move forward in my learning.. is to ask if I'm not sure, and always re-ready something I'm not sure about then to give up.
How would you have solved this problem?
Do you have feedback/feedforward for me to use in the future?
Well, please feel free and be welcome to drop by the comment box and leave me some feedback!
I look forward in seeing all your comments and views...
Many Thanks... :)
0 comments:
Post a Comment